Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin.
نویسندگان
چکیده
A novel polymer-modified thermosensitive liposome (pTSL) was developed for the delivery of Doxorubicin (DOX) for cancer therapy. Copolymers containing temperature-responsive N-isopropylacrylamide (NIPAAm) and pH-responsive propylacrylic acid (PAA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, yielding copolymers with dual pH/temperature-dependent phase transition properties. When attached to liposomes, these copolymers were membrane-disruptive in a pH/temperature-dependent manner. pTSL demonstrated enhanced release profile and significantly lower thermal dose threshold when compared to traditional thermosensitive formulations and were stable in serum with minimal drug leakage over time. These liposomes thus have the potential to dramatically reduce the risk of damage to healthy tissues that is normally associated with liposomal cancer therapy.
منابع مشابه
In situ-forming hydrogels--review of temperature-sensitive systems.
In the past few years, an increasing number of in situ-forming systems have been reported in the literature for various biomedical applications, including drug delivery, cell encapsulation, and tissue repair. There are several possible mechanisms that lead to in situ gel formation: solvent exchange, UV-irradiation, ionic cross-linkage, pH change, and temperature modulation. The thermosensitive ...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملPassive targeting of thermosensitive diblock copolymer micelles to the lungs: synthesis and characterization of poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)
BACKGROUND Amphiphilic poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) copolymers were synthesized by ring-opening polymerization to form thermosensitive micelles as nanocarriers for bioimaging and carboplatin delivery. RESULTS The critical micelle concentration increased from 1.8 to 3.5 mg/l following the decrease of the PNiPAAm chain length. The copolymers revealed a ...
متن کاملDual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملThe antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo
Clotted plasma proteins are present on the walls of tumor vessels and in tumor stroma. Tumor-homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) could recognize the clotted plasma proteins in tumor vessels. Thermosensitive liposomes could immediately release the encapsulated drug in the vasculature of the heated tumor. In this study, we designed a novel form of targeted thermosensitive liposomes, CREKA-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2010